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In this paper we estimate the rate of convergence of the Durrmeyer—Bézier
operators D, ,(f, x) for functions of bounded variation and prove that the
D, .(f, x) converge to the limit 1/(x+1) f(x+ ) +a/(x+ 1) f(x—) for functions of
bounded variation f(¢). Our result improves and extends the result of S. Guo (1987,
J. Approx. Theory 51, 183-192).  © 2000 Academic Press

1. INTRODUCTION

For a function f defined on [0, 1], the Bernstein operator B, is defined
by

n

Bufx)= X ki) pu(). put0)=
k=0

>xk(1x)"k. (1)

A modified type of operator B, is defined by

B, (f.x)= 2 flk/n) Q2 (x), (2)
k=0

where a>1 and Q) (x) = (X]_ ¢ puy(x))* = (Xf_ i1 Pw(¥)™

The operator B, ,(f) is called the Bernstein-Bézier operator. When
a=1, B, {(f) is just the operator B,(f) given as (1).

Naturally, the same modification can be done for Szasz, Kantorovich,
and Durrmeyer operators. These modified types of operators are called the
Szasz-Bézier operator S, ,(f, x), Kantorovich-Bézier operator L, ,(f, x),
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and Durrmeyer-Bézier operator D, ,(f, x), respectively. In the concrete,
for a function f defined on [0, 1] and a>1, the Durrmeyer—Bézier
operator D, , is defined by

Du X =+ 1) X 0R ) [ A0) paulty (3)

where p(x) = (7) (1 =x)" 75 O (%) = (X7 _g Py (X)* — () _ g 41 Pi(X))"
It is obvious that D, , is a positive linear operator and D, ,(1, x)=1.
When a=1, D, ,(f) is just the well-known Durrmeyer operator

n 1
(LX) =t ) Y pulx) | S0 ) (4)
k=0

Cheng [4,5] and Guo [6] estimated the rates of convergence of
Bernstein operators B, (f, x), Szasz operators S,(f, x) and Durrmeyer
operators D, ( f, x) for functions of bounded variation and proved that the
operators B,(f, x), S,(f,x) and D,(f, x) all convergence to the limit
1f(x+)+3 f(x—) for functions of bounded variation. References [2, 3]
proved that the operators B, ,(f. x), L, .(f,x) and S, ,(f, x) all con-
vergence to the limit (1/2%) f(x+)+(1—1/2%) f(x—) for functions of
bounded variation (a>1,n— +o0). In this paper we shall estimate the
rate of convergence of operators D, ,(f, x) for functions of bounded varia-
tion and prove that operators D, ,(f, x) converge to the limit (1/(a+1))
flx+)+(a/(e+1)) f(x—) for functions of bounded variation. This result
is unforeseen, which shows that the approximation property of D, ,(f, x)
is different from those of B, ,(f, x), L, .(f.x) and S, (/. x) in essence.
Our main result can be stated as follows:

THEOREM. Let f be a function of bounded variation on [0, 1] (fe
BV[0,1]), «=1. Then for every xe(0,1) and n> (1/x(1 —x)) we have

1
Dyt = s+ g x|

+1

n x+(1—x)/\/1; 20( 5
< Dt —— —flx— )l
T IV et = ) (5)

where \/® (g.) is the total variation of g, on [a,b] and

f()—f(x+), x<t<l;
g:(1)=140, t=x; (6)
f)—flx=), 0<r<x.
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2. PRELIMINARY RESULTS

We need some preliminary results for proving Theorem. First, with the
method of Bojanic and Vuilleumier [ 1] (see Cheng [4] and Guo [6]), we
prove the following:

Lemma 1. For every x€(0, 1) and n> 1/x(1 — x), there holds

n x+(1—x)/k
XV (&) (7)
k=1 x—x/\//;

Proof. Let K, o (x,1)=(n+1)37_o 0% (x) p(t). We first recall the
Lebesgue—Stieltjes integral representations:

|Dn,oc(gx9 x)' <
nx l—x

1
Dy (g0 3)= | () Kol 1) . (8)

We decompose the integral of (8) into three parts, as

1
J, &) Ko a1y dr= (o) B ()4 By (o),

where A, (fx) =[5 g (1) K, o (x 0 dt, Ay, (fx) =[50 2N g (1)

K, (x,t)dt, A; ,(f,x) §x+(1 x)/\/gx()K x,0)dt Let 4, ,(x, t)=
[6Ky o(x, u) du. First, we estimate A, ,(f,x). For re[x— x/ﬁ X+

(1—x /f], we have

x+(1—=x)//n
[ Ay, (fsx)| = f . (8x(1) = gx(X)) d; 2y, 4 (X, 1)
x+(1—x)//n n x+1—x)//k
< Vo (g < Z V(g 9)
xfx/\/; k=2 xfx/\/lz

Next, we estimate A, ,(f x). Let y=x—x/ﬁ. Using partial
Lebesgue—Stieltjes integration, we have

Ay a(fx)=

xfx/\/};
[ a0 a1

0

= gx(y + ) )”n,zx(x7 y) _J;)y in,rx(xa t) dt gx(t)
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Since |g.(y+)I=1g.(y+)—g.(x) <\/5, (g, it follows that

X

» P

200N €V (80 Anale 0+ [ Aualiend =V (0] (10
y+ t

Using the fact that |a*—b%*| <a |a—b| with 0<a, b<1, and a>1, we get

0% (x) < op,i(x). By this inequality and the proof of Lemma ILI. of [ 10,

p- 327] (cf. [ 6, p. 186] also), it follows that

Dn,a((tix)za x) <a'Dn,l((l‘ix)a x)

2(n—3)x(1—x)~|—2< 2nx(l —x)+2
n+2)n+3) n '

Note that y=x — x/ﬁ < Xx, hence

—1\2
et )= Kot drs [ (220 Ky d

< ! D, L ((1—x)?, X)SO(M.
(x=py) "

From (10) and (11) we have

2nx(1—x)+2 *
PPt Sl A

V (g.)

x—y?
2nx(1—x)+2 >
o

n fo (xit)zdt< \j/(gx)> (12)

AL (fx)] <

Furthermore, since

y 1 X 1 x N y 2 x
Jo(x_t)zdt<\/(gx)>: —l)2 \/(gx)|0 +Jom\t/(gx)dl‘.

t

So we have from (12)

(Ve + [ Em Ve a).

2nx(1 —x)+2
N

A, (f X<

Putting ¢ = x—x/\/; in the last integral, we get

x—x/\/; 2 x 1 2 x 1
| sV )di=5] V (g)dus;

Y (X— t X x—x/\/I; X =1 x—x/\//;
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Consequently
2nx(1 x ” *
Bl <2 (Vi) ¥V ()
n-x 0 k=1 x—x/\/lg
21 —x) +2 ! AN
< 22 (Vieo+ ¥ (). (3)
n?x? 0 k=1 x—x//k

Using the similar method for estimating |A; ,(f, x)|, we get

2 1— 2 1 n x+(1—x)/\/lz
Baatfol<a =2 (Ve ¥ TV ()
n(l x k=1 x
2 17 2 1 n x+(1—x)/\/l;
<M (Vo YV e (4)
(1 X 0 k=1 x—x/\/l;

Note that (1—x)?4+x?<1, and it is easy to verify that 1/(n—1)<
a((2nx(1 —x) +2)/n*x*(1 —x)?), for n> 1, xe [0, 1]. Hence from (9), (13),
and (14), it follows that

1Dy, (s O STA (s X) A+ 1A, (f X) [+ [ A5, (f, X))

AN 2nx(1—x) +2
(&) ta—F5——5
—1 ,Ez x_\xé\/,; n’x*(1 —x)?

n x+(17x)/\/lz

x<v(gx)+z Vo (g))

k=1 x—x//k
4 n x+(1—x)/\/1;
@L YooV (g (15)
nX k=1 x—x/\/lz

Obviously, a((4nx(1 —x)+4)/mn*x*(1 —x)?) <8a/nx(1 —x), for n>1/
x (1 —x). Hence Lemma 1 follows from (15).

Lemma 2 is the well-known Berry—Esseen bound for the classical central
limit theorem of probability theory. Its proof and further discussion can be
found in Shiryayev [ 7, p. 432].

LEMMA 2. Let {& )7, be a sequence of independent and identically
distributed random variables with finite variance such that the expecta-
tion E(&\)=a; e R=(—00, +0), the variance Var(&,)=b>>0. Assume
E |, —a,|® < . Then there exists a constant C, 1/\/2777.'< C<0.8, such that
foralln=1,2,3, --- and all t

G

E|fl_al|3

/nb3

e~ du‘<C (16)

: .
s L G|
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LemMmA 3. Forj—l 2,3,...n, and xe(0,1), writing A, =(j— 1 —nx)/

Jnx(l1—x), A,=(j n+1 x)/(m+1)x(1—x), and A;=(j—1-—
(n+1)x)/(n+1) x(1—x), we have

1

1
A — A4, | S —F—, and 4] — A3 | S —————. (17)
' 2 nx(1—x) ! ’ v/ nx(1—x)
Proof. Tt is evident for j=1,2,3,..,n, and xe€(0, 1) that
\/7+\/x<\/7+\/ 2/n+1+/n),
which implies
S\/i«/rH— f—l—fx,/n—l— f
Hence
h(ﬁ/w1—\/;2)+\/;2x(./n+1—ﬁ)—1‘ <1
n+
That is,
S
‘/—l—nx— (j—(n+1)x)
n+1
Consequently
1
|4) — Ay | S .
nx(1 —x)
The second inequality in (17) can be obtained in the same manner.
Set
Juc(X)= 3, puy(X) (T nia(x)=0). (18)

=k
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Then for k=0,1,2,3, ..., n

n+1

J;z+l,k+l(x) = Z p’n+1,j(x)

j=k+1

n

=(m+1) Y (Pu ;1 ()= py(x) + (1 +1) ppy(x)

Jj=k+1

=(n+1) pul(x)

and J, 1 +4+1(0)=0. So we have

x k
(4 1) | ) =Ty n () =1= % praa () (19)

Jj=0

By Lemmas 2, 3, we prove the

Lemma 4. For all xe(0,1) and j=0,1, 2, 3, ..., n, we have

20

; <—F—, 20
B N e peee (20)
and
20
JE(x)—J% <—— 21
30 =T, 0] € s (1)

Proof.  First, |J5(x)—J5 1 0(x)|=1-1=0, so (21) holds for j=0,
and  |J5(x) =J5 (0] Sl (X) =Ty (X) =ap, 1 1,0(x), so (20)

holds for j=0 from the fact that p,,,; o(x)<2//nx(1 —x) (cf. [11,
Theorem 1]). For j=1, 2,3, ..., n, let £; be the random variable with two-

point distribution P(¢&; =i)=x'(1—x)'"(i=0,1, and xe[0,1] is a
parameter). Hence

ay=E&)=x, bi=E¢ —a)?=x(1-x), (22)

and E(& —a))*=x(1 —x)—3x*(1—x)> (cf. [8, p. 14]). By Holder
inequality, we get

E|& —a,P<VEE —ay) EE —ap)?= /X1 —3x3(1 —x)?

=x(1—x)/1=3x(1—x)<x(1—x). (23)
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Let {&,} -, be a sequence of independent random variables identically
distributed with &, n,=>7_; ;. Then the probability distribution of the
random variable 7,, is

P(nn=k)=<”>xk<1—x>"k:p,,k(x> (0<k<n)

So
[ (X) =T i1, j1 () =P(j<n,<n)—P(j+1<n,,  <n+1)]
=[1—=Pn,<j—1) =1+ P, 1<)l
=P, <j—1)—=P(n, 1 <))l (24)

Writing 4, =(j— 1 —nx)//nx(1 —x), A,=(j—(n+1) x)/./(n+1) x(1 —x)
and using Lemma 2 and (22), (23), we have

A _ 3
Pyejm1-— [ rraf ccEliznl 08 s
NEaSS NN
and
1o 0.8
’P(ﬂn+1<j)—f : e—’z/zdt‘g. (26)
\/27” e nx(1—x)
From (24)-(26) and Lemma 3 we get
1 2, 1.6
)~ T (x)|<’ e’/zdt‘Jr
y +Lj+1 \/ZTZLI (1 —x)

1 1.6
S—7= 4 — A |+ —F——=
2n nx(1—x)

1 1 1.6
<\/27n\/nx(1—x)+\/nx(1—x)
2

<

nx(1 —x) .
Hence from the inequality |¢*—b*| <a|a—b| with 0<a, b<1, and a>1,
it follows that

[ (X) =Ty (X)) <

The proof of (21) is similar. |
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3. PROOF OF THE THEOREM AND REMARKS

For any f(¢)e BV[0, 1], it is known that

i I (x+4)— flx—
fy=5 M0t )45 1) + 0TI g 6,0
1 1 7
| S =3 flx ) =5 ) | 1)
where g (¢) is defined as (6) and
1, t>0 1 B
sen(1) =10, (=0 5x(z)={0’ Z;i
-1, t<0; ’ '
By a simple algebra (27) can be expressed as
Sx+)—=flx—)

(1)

f<x+)+ai+1f(x—)+gx(r)+

:oc+1 2

—1 1 1
| sentt =)+ | 0,0 | S0 =5 S ) =5 x| 28)

Obviously, D, ,(d,, x) =0, hence we have

1 o
’Dn,a(f’ X)_|:O(-}—1f(x+)+0(-}—1f(x_):|‘< |Dn,oc(gx’x)|

+|f(X+)gf(x—)I

—1
‘Dn,asgn(t—x), X) 4 ‘

oa+1

From Lemma 1, it is clear that our theorem will be proved if we establish
that

2(2a)

nx(1 —x).

a—1

D r—
alsEn(i =), 3) + 2

N
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In fact, by direct calculation and using (19) we have

n

Dy (sentt =5 =n+1) £ 0R00( [ puttdi= [ putar )

n+1

\M:

00 || Pty de =2 puatt)

=1=2m+1) ¥ 0 () [ puclr)

—1—2ZQ<“> < jf m,x))

=0
— 142 5 0900 S prer ()
k=0 Jj=0

Noticing that Y7_oY % ge=37_>7_ e, Yi_ 0% (x)=Jy(x) and
o ns1(x) =0, we have

n k
—142 ) 0R(x) Y puir ;(x)

k=0 Jj=0
:_1+2Z;MHJ()Z O (x)

j=0 —

=142 ) Pusr (x) J3(x)

j=0
n+1
=—1+42 Y pair () J5(x).
j=0
Hence
1 n+1 2
Dn,a(sgn(tix)a X) Z Pn+1, j (X)70C+1
n+1 n+1
=2 % P W50 T T ORI
/=0 (29)

By the mean value theorem

O () =511 () = In i 1 () = (a4 1) () p(x),

where J, 1 ;11(x) <pn(x)<J, 4, ;(x). Hence it follows from Lemma 4
and (29) that
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oa—1 n+1
D, ,(sgn(1—x), x) + =12 Y Puar (XI5 (x) = ypy(x))
a+1 =0
n+1 20(
<2 ) Pugr, j(X) ———=
=0 nx(1—x)
o 2(20)
nx(l—x)'

The proof is complete.

Remark 1. We shall show that our estimate is the best possible for con-
tinuity points of bounded variation function f. If x is a continuity point of
£, (5) becomes

8a x+(1 —x)/\/lz
1Dy o(fs %) = f(X) S——— Vo (30)

nx(l —x), 7, /SR

When a=1, the conclusion is known (see [6, Remark]). For a#1,
consider the function f(¢) =t From (30) we have

8a 16a

LA |

On the other hand, From [2, (38)], there exists a positive constant C,
such that

|Dn,oc(l‘nx)_-xl< (31)

n k 1_
Y - O0R(x)—x >C1M, for n sufficiently large. (32)
k=o' ﬁ
Hence
n 1
1Dyt ) x| = (1) ¥ QR (x) | tpl)di—x
k=0
Yok+1
= (@) _
kgon'i'z an (X) X
n zok 1—2x
= —0W(x)—
n+2|:k§0nan(x) X:| l’l+2
n zk 1
> Z O _ _
Tl T e —x||-

>C 7Vx(lm (33)
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fo
1/

r n sufficiently large such that (32) holds and meanwhile such that
n+1/Ci/x(1 —x)ﬁ< 1/2. Hence by (31) and (33), we know that (30)

cannot be asymptotically improved.

Remark 2. We conjecture that the second term on the right-hand side

of (5) is asymptotically optimal also (n — + o). Similar results have been
obtained for operators B, ,, L, , and S, , (see [2, 3]).
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